Application of Artificial Neural Network in Forecasting Solar Irradiance and Sizing of Photovoltaic Cell for Standalone Systems in Bangladesh
نویسندگان
چکیده
Generation of electricity from solar energy is gaining popularity as a solution to the growing energy demands. The most important parameter in renewable energy applications is solar radiation. Due to intense power crisis, more and more solar energy based solutions are being purchased. Drawbacks of these solutions are long payback period and comparatively less efficiency. To improve this scenario, the sizing of the PV arrays can be optimized to enhance the overall efficiency. This paper presents an application of artificial neural network to predict solar radiation from a dataset collected over a span of nine years. Then these forecasted values are used to size standalone PV systems for different locations. General Terms Artificial Intelligence, Renewable Energy, Neural Networks.
منابع مشابه
Power and Fresh Water Production by Solar Energy, Fuel Cell, and Reverse Osmosis Desalination
This paper presents sizing, energy management strategy, and cost analysis for a configuration consisting of solar photovoltaic (PV) panels, fuel cell (FC) storage system, and reverse osmosis (RO) desalination technology for combined power and fresh water production. In this system, PV is the main power supply source; fuel cell is a storage system accompanied by Hydrogen production and storage d...
متن کاملReal-time forecasting of solar irradiance ramps with smart image processing
We develop a standalone, real-time solar forecasting computational platform to predict one minute averaged solar irradiance ramps ten minutes in advance. This platform integrates cloud tracking techniques using a low-cost fisheye network camera and artificial neural network (ANN) algorithms, where the former is used to introduce exogenous inputs and the latter is used to predict solar irradianc...
متن کاملBayesian Based Neural Network Model for Solar Photovoltaic Power Forecasting
Solar photovoltaic power (PV) generation has increased constantly in several countries in the last ten years becoming an important component of a sustainable solution of the energy problem. In this paper, a methodology to 24-hour or 48-hour photovoltaic power forecasting based on a Neural Network, trained in a Bayesian framework, is proposed. More specifically, an multi-ahead prediction Multi-L...
متن کاملOptimizing Design of Stand-alone Hybrid Solar Micro-CHP Systems Using LUS Based Particle Swarm Optimization Algorithm
Utilizing the combined cooling, heating and power generation (CHP) systems to produce cooling, heat and electricity is growing rapidly due to their high efficiency and low emissions in commercial and industrial applications. In conventional CHP systems the deficit of the system power can be purchased from the grid. However, this system cannot be used as the standalone application. The hybrid so...
متن کاملEstimating Efficiency of Monocrystalline and Polycrystalline Photovoltaic Panels Using Neural Network Models
The energy production analysis of a photovoltaic system depends on the panels tempreture and solar radiation. An endless and free source of solar energy received at the Earth's surface depends on the geographical location, different hours of day and seasons of the year.Hence, its correct evaluation is a strategic factor for the feasibility of a solar system. in this paper, a new method of ener...
متن کامل